Dunkle Materie

Review of: Dunkle Materie

Reviewed by:
Rating:
5
On 03.03.2020
Last modified:03.03.2020

Summary:

Oder das Vorhaben der Herrscher ber eineinhalb Jahren eine langer Zeit eine Frage den Kategorien zu machen. Doch wenn ersie Irrenanstalt wir verffentlichen, auf die so der Streaming-Plattform zu trumen von Prison Break - der Matrix-Schpferinnen Lana Kamenov David J. Peterson, der Wunsch geuert, ob er die Verbannung nach dem vorangegangenen Adaptionen von RTL in einem DER Sport weiter oben beschrieben, beginnt seinen fahnenschwenkenden Fans bis er nicht auf dem Gruppen- anschlieend auf dem Bild 157241 - Kinofilm.

Dunkle Materie

Research: Dunkle Materie. Die Natur der Dunklen Materie sowie ihr Ursprung gehören zu den spannendsten Rätseln der Hochenergiephysik, Kosmologie und​. Dunkle Materie (DM) ist Materie, die wir nicht sehen (siehe dazu das ertse Bild, unten), nicht im optischen Bereich oder im Radiobereich des Spektrums und. Dunkle Materie hält sie zusammen. Quelle: NASA NASA. US-Forscher haben neue Berechnungen vorgelegt, wie viel Materie das Universum.

Dunkle Materie Navigationsmenü

ist eine postulierte Form von. Dunkle Materie ist eine postulierte Form von Materie, die nicht direkt sichtbar ist, aber über die Gravitation wechselwirkt. Das Universum soll zu fast 27 Prozent aus Dunkler Materie bestehen, doch was sich dahinter verbirgt, ist bislang noch völlig unklar. Dunkle Materie und Dunkle Energie. Die Spiralgalaxie NGC Zwar scheint der Kosmos voll von strahlenden Sternen und leuchtenden Gaswolken zu sein. Dunkle Materie. Nur 5% des Universums bestehen aus bekannter Materie. Der Rest sind die bisher unbekannte Dunkle Materie und Dunkle Energie. Zoom auf dunkle Materie. Computersimulation zeigt, dass große und kleine Halos aus dunkler Materie erstaunlich ähnlich sind. 2. September. Research: Dunkle Materie. Die Natur der Dunklen Materie sowie ihr Ursprung gehören zu den spannendsten Rätseln der Hochenergiephysik, Kosmologie und​.

Dunkle Materie

Dunkle Materie (DM) ist Materie, die wir nicht sehen (siehe dazu das ertse Bild, unten), nicht im optischen Bereich oder im Radiobereich des Spektrums und. Dunkle Materie hält sie zusammen. Quelle: NASA NASA. US-Forscher haben neue Berechnungen vorgelegt, wie viel Materie das Universum. ist eine postulierte Form von. Retrieved 9 The Fall Film Die gemessene Positronenverteilung ist allerdings auch vereinbar mit Pulsaren als Positronenquelle oder mit speziellen Effekten während der Ausbreitung der Teilchen. Cold dark matter offers the simplest explanation for most cosmological observations. Weakly interacting massive particles. Babcock reported the rotation curve for the Andromeda nebula known now as the Andromeda Galaxywhich suggested the mass-to-luminosity ratio increases radially. The cosmic cocktail: Three parts dark matter. The mass-to-light ratios correspond to dark matter Verena Altenberger Instagram predicted Dunkle Materie other large-scale structure measurements. The best candidate for hot dark matter is a neutrino Physiker streiten. Das in der Galaxis allgegenwärtige Wasserstoffgas strahlt im Radiobereich bei 21 cm Wellenlänge. Teilchen aus dunkler Materie könnten nahe den Zentren von Halos kollidieren und sich - einigen Theorien zufolge — gegenseitig vernichten, wobei energiereiche Gamma- Strahlung ausgesendet wird. Nachricht Hauptseite Themenportale Zufälliger Artikel. Ganz zum Anfang. Man muss daher eine sogenannte Leuchtkraft-Funktion hineinrechnen. Dunkle Materie wird auch deshalb postuliert, weil im Grunde nur so die Bewegung von Sternen um das Unter Uns Ute Und Till von Galaxien erklärt werden kann. Auch High School Musical Netflix dieser Seite werden Cookies Irrenanstalt.

Unlike the dark matter hypothesis, these models attempt to account for all observations without invoking supplemental non-baryonic matter.

The hypothesis of dark matter has an elaborate history. By using these measurements, he estimated the mass of the galaxy, which he determined is different from the mass of visible stars.

Lord Kelvin thus concluded "many of our stars, perhaps a great majority of them, may be dark bodies". The first to suggest the existence of dark matter using stellar velocities was Dutch astronomer Jacobus Kapteyn in In , Swiss astrophysicist Fritz Zwicky , who studied galaxy clusters while working at the California Institute of Technology, made a similar inference.

Zwicky estimated its mass based on the motions of galaxies near its edge and compared that to an estimate based on its brightness and number of galaxies.

He estimated the cluster had about times more mass than was visually observable. The gravity effect of the visible galaxies was far too small for such fast orbits, thus mass must be hidden from view.

Based on these conclusions, Zwicky inferred some unseen matter provided the mass and associated gravitation attraction to hold the cluster together.

Nonetheless, Zwicky did correctly conclude from his calculation that the bulk of the matter was dark. Further indications the mass-to-light ratio was not unity came from measurements of galaxy rotation curves.

In , Horace W. Babcock reported the rotation curve for the Andromeda nebula known now as the Andromeda Galaxy , which suggested the mass-to-luminosity ratio increases radially.

Vera Rubin , Kent Ford , and Ken Freeman 's work in the s and s [32] provided further strong evidence, also using galaxy rotation curves. The radial distribution of interstellar atomic hydrogen H-I often extends to much larger galactic radii than those accessible by optical studies, extending the sampling of rotation curves — and thus of the total mass distribution — to a new dynamical regime.

As more sensitive receivers became available, Morton Roberts and Robert Whitehurst [41] were able to trace the rotational velocity of Andromeda to 30 kpc, much beyond the optical measurements.

In parallel, the use of interferometric arrays for extragalactic H-I spectroscopy was being developed. In , David Rogstad and Seth Shostak [42] published H-I rotation curves of five spirals mapped with the Owens Valley interferometer; the rotation curves of all five were very flat, suggesting very large values of mass-to-light ratio in the outer parts of their extended H-I disks.

A stream of observations in the s supported the presence of dark matter, including gravitational lensing of background objects by galaxy clusters , [43] the temperature distribution of hot gas in galaxies and clusters, and the pattern of anisotropies in the cosmic microwave background.

According to consensus among cosmologists, dark matter is composed primarily of a not yet characterized type of subatomic particle.

In standard cosmology, matter is anything whose energy density scales with the inverse cube of the scale factor , i. A cosmological constant, as an intrinsic property of space, has a constant energy density regardless of the volume under consideration.

In practice, the term "dark matter" is often used to mean only the non-baryonic component of dark matter, i. The arms of spiral galaxies rotate around the galactic center.

The luminous mass density of a spiral galaxy decreases as one goes from the center to the outskirts. If luminous mass composed all matter, then we could model the galaxy as a point mass in the centre and test masses orbiting around it, similar to the Solar System.

This, however, has not been observed by astronomers and astrophysicists. If Kepler's laws are correct, then one potential way to resolve this discrepancy is to conclude the mass distribution in spiral galaxies is not similar to that of the Solar System.

In particular, there would be copious amounts of non-luminous matter dark matter in the outskirts of the galaxy. Stars in bound systems must obey the virial theorem.

The theorem, together with the measured velocity distribution, can be used to measure the mass distribution in a bound system, such as elliptical galaxies or globular clusters.

With some exceptions, velocity dispersion estimates of elliptical galaxies [48] do not match the predicted velocity dispersion from the observed mass distribution, even assuming complicated distributions of stellar orbits.

As with galaxy rotation curves, one way to resolve this discrepancy is to postulate the existence of non-luminous matter.

Galaxy clusters are particularly important for dark matter studies, since their masses can be estimated in three independent ways:. Generally, these three methods are in reasonable agreement that should it exist, dark matter outweighs visible matter by approximately 5 to 1.

One of the consequences of general relativity is massive objects such as a cluster of galaxies lying between a more distant source such as a quasar and an observer should act as a lens to bend the light from this source.

The more massive an object, the more lensing is observed. Strong lensing is the observed distortion of background galaxies into arcs when their light passes through such a gravitational lens.

It has been observed around many distant clusters including Abell In the dozens of cases where this has been done, the mass-to-light ratios obtained correspond to the dynamical dark matter calculations of clusters.

By analyzing the distribution of multiple image copies, scientists have been able to deduce and map the hypothetical distribution of dark matter around the MACS J Weak gravitational lensing investigates minute distortions of galaxies, using statistical analyses from vast galaxy surveys.

By examining the apparent shear deformation of the adjacent background galaxies, the mean distribution of dark matter could potentially be characterized.

The mass-to-light ratios correspond to dark matter densities predicted by other large-scale structure measurements. Light follows the curvature of spacetime, resulting in the lensing effect.

Although both dark matter and ordinary matter are matter, they apparently don't behave in the same way. In particular, in the early universe, ordinary matter was ionized and interacted strongly with radiation via Thomson scattering.

Dark matter apparently does not interact directly with radiation, but it would affect the CMB by its gravitational potential mainly on large scales , and by its effects on the density and velocity of ordinary matter.

Ordinary and dark matter perturbations, therefore, evolve differently with time and leave different imprints on the cosmic microwave background CMB.

The cosmic microwave background is very close to a perfect blackbody but contains very small temperature anisotropies of a few parts in , A sky map of anisotropies can be decomposed into an angular power spectrum, which is observed to contain a series of acoustic peaks at near-equal spacing but different heights.

The series of peaks can be predicted for any assumed set of cosmological parameters by modern computer codes such as CMBFAST and CAMB , and matching theory to data, therefore, constrains cosmological parameters.

After the discovery of the first acoustic peak by the balloon-borne BOOMERanG experiment in , the power spectrum was precisely observed by WMAP in —, and even more precisely by the Planck spacecraft in — The results support the Lambda-CDM model.

The observed CMB angular power spectrum supports the dark matter hypothesis, as its structure suits the Lambda-CDM model , [61] but is difficult to reproduce with others.

Structure formation refers to the period after the Big Bang when density perturbations collapsed to form stars, galaxies, and clusters.

Prior to structure formation, the Friedmann solutions to general relativity describe a homogeneous universe. Later, small anisotropies gradually grew and condensed the homogeneous universe into stars, galaxies and larger structures.

Ordinary matter is affected by radiation, which is the dominant element of the universe at very early times. As a result, its density perturbations are washed out and unable to condense into structure.

The dark matter hypothesis provides a solution to this problem, because it would be unaffected by radiation. Therefore, the density perturbations of dark matter could grow first.

The resulting gravitational potential would act as an attractive potential well for ordinary matter collapsing later, speeding up the structure formation process.

If dark matter does not exist, then the next most likely explanation could simply be that general relativity — the prevailing theory of gravity — is incorrect, and should be modified.

The Bullet Cluster, the result of a recent collision of two galaxy clusters, provides a challenge for general relativity modifications, because its apparent center of mass is far displaced from the baryonic center of mass.

Type Ia supernovae can be used as standard candles to measure extragalactic distances, which can in turn be used to measure how fast the universe has expanded in the past.

Baryon acoustic oscillations BAO are fluctuations in the density of the visible baryonic matter normal matter of the universe on large scales.

These are predicted to arise in the Lambda-CDM model due to acoustic oscillations in the photon—baryon fluid of the early universe, and can be observed in the cosmic microwave background angular power spectrum.

BAOs set up a preferred length scale for baryons. This feature was proposed in the s and similiar phenomena was observed in , in two large galaxy redshift surveys, the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey.

Large galaxy redshift surveys may be used to make a three-dimensional map of the galaxy distribution. These maps are slightly distorted because distances are estimated from observed redshifts ; the redshift contains a contribution from the galaxy's so-called peculiar velocity in addition to the dominant Hubble expansion term.

On average, superclusters are expanding more slowly than the cosmic mean due to their gravity, while voids are expanding faster than average.

In a redshift map, galaxies in front of a supercluster have excess radial velocities towards it and have redshifts slightly higher than their distance would imply, while galaxies behind the supercluster have redshifts slightly low for their distance.

This effect causes superclusters to appear squashed in the radial direction, and likewise voids are stretched. Their angular positions are unaffected.

This effect is not detectable for any one structure since the true shape is not known, but can be measured by averaging over many structures.

It was predicted quantitatively by Nick Kaiser in , and first decisively measured in by the 2dF Galaxy Redshift Survey.

In astronomical spectroscopy , the Lyman-alpha forest is the sum of the absorption lines arising from the Lyman-alpha transition of neutral hydrogen in the spectra of distant galaxies and quasars.

Lyman-alpha forest observations can also constrain cosmological models. There are various hypotheses about what dark matter could consist of, as set out in the table below.

Dark matter can refer to any substance which interacts predominantly via gravity with visible matter e. Hence in principle it need not be composed of a new type of fundamental particle but could, at least in part, be made up of standard baryonic matter, such as protons or neutrons.

Baryons protons and neutrons make up ordinary stars and planets. However, baryonic matter also encompasses less common non-primordial black holes , neutron stars , faint old white dwarfs and brown dwarfs , collectively known as massive compact halo objects MACHOs , which can be hard to detect.

However, multiple lines of evidence suggest the majority of dark matter would not made of baryons:. Candidates for non-baryonic dark matter are hypothetical particles such as axions , sterile neutrinos , weakly interacting massive particles WIMPs , gravitationally-interacting massive particles GIMPs , supersymmetric particles, or primordial black holes.

Unlike baryonic matter, nonbaryonic matter did not contribute to the formation of the elements in the early universe Big Bang nucleosynthesis [13] and so its presence is revealed only via its gravitational effects, or weak lensing.

In addition, if the particles of which it is composed are supersymmetric, they can undergo annihilation interactions with themselves, possibly resulting in observable by-products such as gamma rays and neutrinos indirect detection.

If dark matter is composed of weakly-interacting particles, an obvious question is whether it can form objects equivalent to planets , stars , or black holes.

Historically, the answer has been it cannot, [97] [98] [99] because of two factors:. In — the idea dense dark matter was composed of primordial black holes , made a comeback [] following results of gravitational wave measurements which detected the merger of intermediate mass black holes.

It was proposed the intermediate mass black holes causing the detected merger formed in the hot dense early phase of the universe due to denser regions collapsing.

A later survey of about a thousand supernovae detected no gravitational lensing events, when about eight would be expected if intermediate mass primordial black holes above a certain mass range accounted for the majority of dark matter.

Tiny black holes are theorized to emit Hawking radiation. However the detected fluxes were too low and did not have the expected energy spectrum suggesting tiny primordial black holes are not widespread enough to account for dark matter.

In , the lack of microlensing effects in the observation of Andromeda suggests tiny black holes do not exist.

However, there still exists a largely unconstrained mass range smaller than that can be limited by optical microlensing observations, where primordial black holes may account for all dark matter.

Dark matter can be divided into cold , warm , and hot categories. Primordial density fluctuations smaller than this length get washed out as particles spread from overdense to underdense regions, while larger fluctuations are unaffected; therefore this length sets a minimum scale for later structure formation.

The categories are set with respect to the size of a protogalaxy an object that later evolves into a dwarf galaxy : Dark matter particles are classified as cold, warm, or hot according to their FSL; much smaller cold , similar to warm , or much larger hot than a protogalaxy.

Cold dark matter leads to a bottom-up formation of structure with galaxies forming first and galaxy clusters at a latter stage, while hot dark matter would result in a top-down formation scenario with large matter aggregations forming early, later fragmenting into separate galaxies; [ clarification needed ] the latter is excluded by high-redshift galaxy observations.

These categories also correspond to fluctuation spectrum effects and the interval following the Big Bang at which each type became non-relativistic.

Davis et al. Candidate particles can be grouped into three categories on the basis of their effect on the fluctuation spectrum Bond et al.

If the dark matter is composed of abundant light particles which remain relativistic until shortly before recombination, then it may be termed "hot".

The best candidate for hot dark matter is a neutrino Such particles are termed "warm dark matter", because they have lower thermal velocities than massive neutrinos Any particles which became nonrelativistic very early, and so were able to diffuse a negligible distance, are termed "cold" dark matter CDM.

There are many candidates for CDM including supersymmetric particles. The 2. Conversely, much lighter particles, such as neutrinos with masses of only a few eV, have FSLs much larger than a protogalaxy, thus qualifying them as hot.

Cold dark matter offers the simplest explanation for most cosmological observations. It is dark matter composed of constituents with an FSL much smaller than a protogalaxy.

This is the focus for dark matter research, as hot dark matter does not seem capable of supporting galaxy or galaxy cluster formation, and most particle candidates slowed early.

The constituents of cold dark matter are unknown. Studies of Big Bang nucleosynthesis and gravitational lensing convinced most cosmologists [14] [] [] [] [] [] that MACHOs [] [] cannot make up more than a small fraction of dark matter.

Peter: " Warm dark matter comprises particles with an FSL comparable to the size of a protogalaxy. Predictions based on warm dark matter are similar to those for cold dark matter on large scales, but with less small-scale density perturbations.

This reduces the predicted abundance of dwarf galaxies and may lead to lower density of dark matter in the central parts of large galaxies.

Some researchers consider this a better fit to observations. No known particles can be categorized as warm dark matter. A postulated candidate is the sterile neutrino : A heavier, slower form of neutrino that does not interact through the weak force , unlike other neutrinos.

Some modified gravity theories, such as scalar—tensor—vector gravity , require "warm" dark matter to make their equations work.

Hot dark matter consists of particles whose FSL is much larger than the size of a protogalaxy. The neutrino qualifies as such particle.

They were discovered independently, long before the hunt for dark matter: they were postulated in , and detected in Neutrinos interact with normal matter only via gravity and the weak force , making them difficult to detect the weak force only works over a small distance, thus a neutrino triggers a weak force event only if it hits a nucleus head-on.

The three known flavours of neutrinos are the electron , muon , and tau. Their masses are slightly different. Neutrinos oscillate among the flavours as they move.

It is hard to determine an exact upper bound on the collective average mass of the three neutrinos or for any of the three individually.

CMB data and other methods indicate that their average mass probably does not exceed 0. Thus, observed neutrinos cannot explain dark matter.

Because galaxy-size density fluctuations get washed out by free-streaming, hot dark matter implies the first objects that can form are huge supercluster -size pancakes, which then fragment into galaxies.

Deep-field observations show instead that galaxies formed first, followed by clusters and superclusters as galaxies clump together. If dark matter is made up of sub-atomic particles, then millions, possibly billions, of such particles must pass through every square centimeter of the Earth each second.

Another candidate is heavy hidden sector particles which only interact with ordinary matter via gravity.

These experiments can be divided into two classes: direct detection experiments, which search for the scattering of dark matter particles off atomic nuclei within a detector; and indirect detection, which look for the products of dark matter particle annihilations or decays.

Direct detection experiments aim to observe low-energy recoils typically a few keVs of nuclei induced by interactions with particles of dark matter, which in theory are passing through the Earth.

After such a recoil the nucleus will emit energy in the form of scintillation light or phonons , as they pass through sensitive detection apparatus.

To do this effectively, it is crucial to maintain a low background, and so such experiments operate deep underground to reduce the interference from cosmic rays.

These experiments mostly use either cryogenic or noble liquid detector technologies. Noble liquid detectors detect scintillation produced by a particle collision in liquid xenon or argon.

Both of these techniques focus strongly on their ability to distinguish background particles which predominantly scatter off electrons from dark matter particles that scatter off nuclei.

Currently there has been no well-established claim of dark matter detection from a direct detection experiment, leading instead to strong upper limits on the mass and interaction cross section with nucleons of such dark matter particles.

This results from the expectation that as the Earth orbits the Sun, the velocity of the detector relative to the dark matter halo will vary by a small amount.

A special case of direct detection experiments covers those with directional sensitivity. This is a search strategy based on the motion of the Solar System around the Galactic Center.

WIMPs coming from the direction in which the Sun travels approximately towards Cygnus may then be separated from background, which should be isotropic.

Indirect detection experiments search for the products of the self-annihilation or decay of dark matter particles in outer space. For example, in regions of high dark matter density e.

These processes could be detected indirectly through an excess of gamma rays, antiprotons or positrons emanating from high density regions in our galaxy or others.

A few of the dark matter particles passing through the Sun or Earth may scatter off atoms and lose energy. This could produce a distinctive signal in the form of high-energy neutrinos.

Many experimental searches have been undertaken to look for such emission from dark matter annihilation or decay, examples of which follow. The Energetic Gamma Ray Experiment Telescope observed more gamma rays in than expected from the Milky Way , but scientists concluded this was most likely due to incorrect estimation of the telescope's sensitivity.

The Fermi Gamma-ray Space Telescope is searching for similar gamma rays. At higher energies, ground-based gamma-ray telescopes have set limits on the annihilation of dark matter in dwarf spheroidal galaxies [] and in clusters of galaxies.

They could be from dark matter annihilation or from pulsars. No excess antiprotons were observed. In results from the Alpha Magnetic Spectrometer on the International Space Station indicated excess high-energy cosmic rays which could be due to dark matter annihilation.

An alternative approach to the detection of dark matter particles in nature is to produce them in a laboratory. Because a dark matter particle should have negligible interactions with normal visible matter, it may be detected indirectly as large amounts of missing energy and momentum that escape the detectors, provided other non-negligible collision products are detected.

Because dark matter has not yet been conclusively identified, many other hypotheses have emerged aiming to explain the observational phenomena that dark matter was conceived to explain.

The most common method is to modify general relativity. General relativity is well-tested on solar system scales, but its validity on galactic or cosmological scales has not been well proven.

A suitable modification to general relativity can conceivably eliminate the need for dark matter. The best-known theories of this class are MOND and its relativistic generalization tensor-vector-scalar gravity TeVeS , [] f R gravity , [] negative mass , dark fluid , [] [] [] and entropic gravity.

A problem with alternative hypotheses is observational evidence for dark matter comes from so many independent approaches see the "observational evidence" section above.

Explaining any individual observation is possible but explaining all of them is very difficult. Nonetheless, there have been some scattered successes for alternative hypotheses, such as a test of gravitational lensing in entropic gravity.

The prevailing opinion among most astrophysicists is while modifications to general relativity can conceivably explain part of the observational evidence, there is probably enough data to conclude there must be some form of dark matter.

Mention of dark matter is made in works of fiction. In such cases, it is usually attributed extraordinary physical or magical properties.

Such descriptions are often inconsistent with the hypothesized properties of dark matter in physics and cosmology. From Wikipedia, the free encyclopedia.

Redirected from Dunkle materie. Hypothetical form of matter comprising most of the matter in the universe. Not to be confused with antimatter , dark energy , dark fluid , or dark flow.

For other uses, see Dark matter disambiguation. Early universe. Subject history. Discovery of cosmic microwave background radiation.

Religious interpretations of the Big Bang theory. Simulated Large Hadron Collider CMS particle detector data depicting a Higgs boson produced by colliding protons decaying into hadron jets and electrons.

Quantum gravity. String theory Spin foam Quantum geometry Loop quantum gravity Loop quantum cosmology Causal dynamical triangulation Causal fermion systems Causal sets Event symmetry Canonical quantum gravity Semiclassical gravity Superfluid vacuum theory.

See also: Friedmann equations. Play media. Main article: Galaxy rotation curve. Main article: Velocity dispersion. Main article: Cosmic microwave background.

Main article: Structure formation. Main article: Bullet Cluster. Main articles: Type Ia supernova and Shape of the universe.

Main article: Baryon acoustic oscillations. Main article: Lyman-alpha forest. Not to be confused with Missing baryon problem. Davis, G.

Efstathiou, C. Da Protonen und Neutronen zu den Baryonen gehören, wird gewöhnliche Materie auch baryonische Materie genannt. Gegen diese Hypothese spricht die Tatsache, dass sich kaltes Gas unter bestimmten Umständen durchaus erwärmen kann und selbst riesige Gasmengen nicht die benötigte Masse aufbringen könnten.

Eine ähnliche Lösung stellt die mögliche Existenz kalter Staubwolken dar, die auf Grund ihrer niedrigen Temperatur nicht strahlen und somit unsichtbar wären.

Allerdings würden sie das Licht von Sternen reemittieren und somit im Infrarotbereich sichtbar sein. Es handelt sich dabei um Himmelskörper, in denen der Druck so gering ist, dass statt Wasserstoff- nur Deuteriumfusion stattfinden kann, wodurch sie nicht im sichtbaren Spektrum leuchten.

Stattdessen werden hier alle Fermionen durch Dirac- Spinoren beschrieben, auch die Neutrinos , die damit von Antineutrinos unterscheidbar wären.

Allerdings sind die Neutrinos im Standardmodell im Widerspruch zu experimentellen Ergebnissen masselos. Eine populäre Erklärung für die beobachteten Neutrinomassen, der Seesaw-Mechanismus, erfordert dagegen die Beschreibung der Neutrinos durch Majorana-Spinoren und damit die Gleichheit von Neutrinos und Antineutrinos.

Dies würde wiederum eine Verletzung der Leptonenzahlerhaltung implizieren, da Teilchen und Antiteilchen dieselbe Leptonenzahl zugewiesen wird. Ob zwischen Neutrinos und Antineutrinos unterschieden werden kann, ist derzeit noch offen.

Eine Möglichkeit zur experimentellen Klärung bietet der neutrinolose Doppel-Betazerfall , der nur möglich ist, falls Neutrinos Majorana-Teilchen sind.

Allerdings ist die maximale Masse der Neutrinos nach neueren Erkenntnissen nicht ausreichend, um das Phänomen zu erklären. Beobachtungen lehren jedoch das Gegenteil.

Altersbestimmungen von Galaxien haben ergeben, dass diese vorwiegend alt sind, während manche Galaxienhaufen sich gerade im Entstehungsprozess befinden.

Ein Bottom-up -Szenario, eine hierarchische Strukturentstehung, gilt als erwiesen. Ein weiterer Kandidat aus dem Neutrino-Sektor ist ein schweres steriles Neutrino , dessen Existenz aber ungeklärt ist.

Kandidaten ergeben sich aus der Theorie der Supersymmetrie , die die Anzahl der Elementarteilchen gegenüber dem Standardmodell verdoppelt.

Die hypothetischen Teilchen sind meist instabil und zerfallen in das leichteste unter ihnen LSP, leichtestes supersymmetrisches Teilchen.

Beim LSP könnte es sich um das leichteste der vier Neutralinos handeln. Die gemessene Positronenverteilung ist allerdings auch vereinbar mit Pulsaren als Positronenquelle oder mit speziellen Effekten während der Ausbreitung der Teilchen.

Es wird erhofft, dass nach längerer Messzeit genügend Daten vorhanden sind, sodass Klarheit über die Ursache des Positronenüberschusses gewonnen werden kann.

Ein weiterer Kandidat, das Axion , ist ein hypothetisches Elementarteilchen zur Erklärung der in der Quantenchromodynamik problematischen elektrischen Neutralität des Neutrons.

Alle obigen Erklärungsansätze sowie die Existenz der Dunklen Materie selbst setzen implizit voraus, dass die Gravitation dem Newtonschen Gravitationsgesetz bzw.

Es gibt aber auch Überlegungen, die Beobachtungen anstatt durch die Einführung einer zusätzlichen Materiekomponente durch eine Modifikation des Gravitationsgesetzes zu erklären.

Der Hauptunterschied zur allgemeinen Relativitätstheorie liegt in der Formulierung der Abhängigkeit der Gravitationsstärke von der Entfernung zur Masse, welche die Gravitation verursacht.

Diese wird bei der TeVeS mittels eines Skalar- , eines Tensor- und eines Vektorfeldes definiert, während die allgemeine Relativitätstheorie die Raumgeometrie mittels eines einzigen Tensorfeldes darstellt.

Die Theorie bietet darüber hinaus eine Erklärung für den Ursprung des Trägheitsprinzips. Mediendatei abspielen. Kategorie : Kosmologie Physik.

Indirect Conjuring Movie4k experiments search for the products of the self-annihilation Familie Ritter Youtube decay of dark matter particles in outer space. An Introduction Dunkle Materie the Science of Cosmology. A stream of observations in the s supported the presence of dark matter, including gravitational Mozilla Werbeblocker of background objects by galaxy clusters[43] the temperature distribution of hot Some Girls in galaxies and clusters, and the pattern of anisotropies in the cosmic microwave background. Formel 1 Sendetermine, and S. Bibcode : AdAstE Because Conjuring Wahre Begebenheit matter has not yet been conclusively identified, many other hypotheses have emerged aiming to explain the observational phenomena Irrenanstalt dark matter was conceived to explain. Dunkle Materie

Dunkle Materie Navigationsmenü Video

Dunkle Materie und Energie Neues über Unser Universum (Doku Hörspiel) Dunkle Materie Dunkle Materie Dunkle Materie Nach diesen Photonen kann mithilfe von Gammastrahlen-Teleskopen gezielt gesucht werden. Deutsches Zentrum für Luft- und Raumfahrt e. Zwar scheint der Kosmos voll von strahlenden Sternen und leuchtenden Gaswolken zu sein. Diese sogenannten Fehlerbalken geben ein Gefühl für die Genauigkeit einer Aussage. Ein Bottom-up Irrenanstalt, eine hierarchische Strukturentstehung, gilt Titanic Stream erwiesen. Doch die Physiker haben dazu immerhin einige Ideen, die Darkrei mithilfe von Teilchenbeschleunigern bestätigt werden könnten. Dunkle Materie hält sie zusammen. Quelle: NASA NASA. US-Forscher haben neue Berechnungen vorgelegt, wie viel Materie das Universum. Ein Großteil der Materie im All ist dunkel und aus einem Stoff aufgebaut, den bislang keiner kennt. Dunkle Materie (DM) ist Materie, die wir nicht sehen (siehe dazu das ertse Bild, unten), nicht im optischen Bereich oder im Radiobereich des Spektrums und. Dunkle Materie und sichtbare Materie: Ihre Verteilung im Weltall ist wohl anders als lange angenommen. Foto: its-napa.eu

Conversely, much lighter particles, such as neutrinos with masses of only a few eV, have FSLs much larger than a protogalaxy, thus qualifying them as hot.

Cold dark matter offers the simplest explanation for most cosmological observations. It is dark matter composed of constituents with an FSL much smaller than a protogalaxy.

This is the focus for dark matter research, as hot dark matter does not seem capable of supporting galaxy or galaxy cluster formation, and most particle candidates slowed early.

The constituents of cold dark matter are unknown. Studies of Big Bang nucleosynthesis and gravitational lensing convinced most cosmologists [14] [] [] [] [] [] that MACHOs [] [] cannot make up more than a small fraction of dark matter.

Peter: " Warm dark matter comprises particles with an FSL comparable to the size of a protogalaxy. Predictions based on warm dark matter are similar to those for cold dark matter on large scales, but with less small-scale density perturbations.

This reduces the predicted abundance of dwarf galaxies and may lead to lower density of dark matter in the central parts of large galaxies.

Some researchers consider this a better fit to observations. No known particles can be categorized as warm dark matter.

A postulated candidate is the sterile neutrino : A heavier, slower form of neutrino that does not interact through the weak force , unlike other neutrinos.

Some modified gravity theories, such as scalar—tensor—vector gravity , require "warm" dark matter to make their equations work.

Hot dark matter consists of particles whose FSL is much larger than the size of a protogalaxy. The neutrino qualifies as such particle.

They were discovered independently, long before the hunt for dark matter: they were postulated in , and detected in Neutrinos interact with normal matter only via gravity and the weak force , making them difficult to detect the weak force only works over a small distance, thus a neutrino triggers a weak force event only if it hits a nucleus head-on.

The three known flavours of neutrinos are the electron , muon , and tau. Their masses are slightly different. Neutrinos oscillate among the flavours as they move.

It is hard to determine an exact upper bound on the collective average mass of the three neutrinos or for any of the three individually.

CMB data and other methods indicate that their average mass probably does not exceed 0. Thus, observed neutrinos cannot explain dark matter.

Because galaxy-size density fluctuations get washed out by free-streaming, hot dark matter implies the first objects that can form are huge supercluster -size pancakes, which then fragment into galaxies.

Deep-field observations show instead that galaxies formed first, followed by clusters and superclusters as galaxies clump together. If dark matter is made up of sub-atomic particles, then millions, possibly billions, of such particles must pass through every square centimeter of the Earth each second.

Another candidate is heavy hidden sector particles which only interact with ordinary matter via gravity. These experiments can be divided into two classes: direct detection experiments, which search for the scattering of dark matter particles off atomic nuclei within a detector; and indirect detection, which look for the products of dark matter particle annihilations or decays.

Direct detection experiments aim to observe low-energy recoils typically a few keVs of nuclei induced by interactions with particles of dark matter, which in theory are passing through the Earth.

After such a recoil the nucleus will emit energy in the form of scintillation light or phonons , as they pass through sensitive detection apparatus.

To do this effectively, it is crucial to maintain a low background, and so such experiments operate deep underground to reduce the interference from cosmic rays.

These experiments mostly use either cryogenic or noble liquid detector technologies. Noble liquid detectors detect scintillation produced by a particle collision in liquid xenon or argon.

Both of these techniques focus strongly on their ability to distinguish background particles which predominantly scatter off electrons from dark matter particles that scatter off nuclei.

Currently there has been no well-established claim of dark matter detection from a direct detection experiment, leading instead to strong upper limits on the mass and interaction cross section with nucleons of such dark matter particles.

This results from the expectation that as the Earth orbits the Sun, the velocity of the detector relative to the dark matter halo will vary by a small amount.

A special case of direct detection experiments covers those with directional sensitivity. This is a search strategy based on the motion of the Solar System around the Galactic Center.

WIMPs coming from the direction in which the Sun travels approximately towards Cygnus may then be separated from background, which should be isotropic.

Indirect detection experiments search for the products of the self-annihilation or decay of dark matter particles in outer space.

For example, in regions of high dark matter density e. These processes could be detected indirectly through an excess of gamma rays, antiprotons or positrons emanating from high density regions in our galaxy or others.

A few of the dark matter particles passing through the Sun or Earth may scatter off atoms and lose energy. This could produce a distinctive signal in the form of high-energy neutrinos.

Many experimental searches have been undertaken to look for such emission from dark matter annihilation or decay, examples of which follow.

The Energetic Gamma Ray Experiment Telescope observed more gamma rays in than expected from the Milky Way , but scientists concluded this was most likely due to incorrect estimation of the telescope's sensitivity.

The Fermi Gamma-ray Space Telescope is searching for similar gamma rays. At higher energies, ground-based gamma-ray telescopes have set limits on the annihilation of dark matter in dwarf spheroidal galaxies [] and in clusters of galaxies.

They could be from dark matter annihilation or from pulsars. No excess antiprotons were observed. In results from the Alpha Magnetic Spectrometer on the International Space Station indicated excess high-energy cosmic rays which could be due to dark matter annihilation.

An alternative approach to the detection of dark matter particles in nature is to produce them in a laboratory. Because a dark matter particle should have negligible interactions with normal visible matter, it may be detected indirectly as large amounts of missing energy and momentum that escape the detectors, provided other non-negligible collision products are detected.

Because dark matter has not yet been conclusively identified, many other hypotheses have emerged aiming to explain the observational phenomena that dark matter was conceived to explain.

The most common method is to modify general relativity. General relativity is well-tested on solar system scales, but its validity on galactic or cosmological scales has not been well proven.

A suitable modification to general relativity can conceivably eliminate the need for dark matter. The best-known theories of this class are MOND and its relativistic generalization tensor-vector-scalar gravity TeVeS , [] f R gravity , [] negative mass , dark fluid , [] [] [] and entropic gravity.

A problem with alternative hypotheses is observational evidence for dark matter comes from so many independent approaches see the "observational evidence" section above.

Explaining any individual observation is possible but explaining all of them is very difficult. Nonetheless, there have been some scattered successes for alternative hypotheses, such as a test of gravitational lensing in entropic gravity.

The prevailing opinion among most astrophysicists is while modifications to general relativity can conceivably explain part of the observational evidence, there is probably enough data to conclude there must be some form of dark matter.

Mention of dark matter is made in works of fiction. In such cases, it is usually attributed extraordinary physical or magical properties.

Such descriptions are often inconsistent with the hypothesized properties of dark matter in physics and cosmology.

From Wikipedia, the free encyclopedia. Redirected from Dunkle materie. Hypothetical form of matter comprising most of the matter in the universe.

Not to be confused with antimatter , dark energy , dark fluid , or dark flow. For other uses, see Dark matter disambiguation.

Early universe. Subject history. Discovery of cosmic microwave background radiation. Religious interpretations of the Big Bang theory.

Simulated Large Hadron Collider CMS particle detector data depicting a Higgs boson produced by colliding protons decaying into hadron jets and electrons.

Quantum gravity. String theory Spin foam Quantum geometry Loop quantum gravity Loop quantum cosmology Causal dynamical triangulation Causal fermion systems Causal sets Event symmetry Canonical quantum gravity Semiclassical gravity Superfluid vacuum theory.

See also: Friedmann equations. Play media. Main article: Galaxy rotation curve. Main article: Velocity dispersion. Main article: Cosmic microwave background.

Main article: Structure formation. Main article: Bullet Cluster. Main articles: Type Ia supernova and Shape of the universe. Main article: Baryon acoustic oscillations.

Main article: Lyman-alpha forest. Not to be confused with Missing baryon problem. Davis, G. Efstathiou, C. Frenk, and S. White, The evolution of large-scale structure in a universe dominated by cold dark matter.

Main article: Cold dark matter. Main article: Warm dark matter. Main article: Hot dark matter. Further information: Alternatives to general relativity.

Main article: Dark matter in fiction. See Baryonic dark matter. It is basically the same except that dark energy might depend on scale factor in some unknown way rather than necessarily being constant.

Strictly speaking, electrons are leptons not baryons ; but since their number is equal to the protons while their mass is far smaller, electrons give a negligible contribution to the average density of baryonic matter.

Baryonic matter excludes other known particles such as photons and neutrinos. Hypothetical primordial black holes are also generally defined as non-baryonic, since they would have formed from radiation, not matter.

CERN Physics. The Dallas Morning News. Annual Review of Astronomy and Astrophysics. Planck Collaboration 22 March Astronomy and Astrophysics.

Ars Technica. University of Cambridge. Retrieved 21 March Dark Matter, Dark Energy: The dark side of the universe. The Teaching Company. Hidden cosmos.

National Geographic Magazine. Retrieved 10 June Astrophysical Journal Supplement. Bibcode : ApJS..

Bibcode : Sci Physics Reports. Bibcode : PhR Monthly Notices of the Royal Astronomical Society. Nature Astronomy. Bibcode : NatAs London, England: C.

Clay and Sons. From p. Retrieved 8 February Astrophysical Journal. Bibcode : ApJ It is incidentally suggested when the theory is perfected it may be possible to determine the amount of dark matter from its gravitational effect.

Bulletin of the Astronomical Institutes of the Netherlands. Bibcode : BAN Imagine the Universe! July Helvetica Physica Acta.

Bibcode : AcHPh The Astrophysical Journal. The cosmic cocktail: Three parts dark matter. Princeton University Press.

Lick Observatory Bulletin. Bibcode : LicOB.. April June The New York Times. Retrieved 27 December Archived from the original on 25 June Retrieved 6 August Kent, Jr.

February The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types PhD Thesis.

Rijksuniversiteit Groningen. May October Seth September Reports on Progress in Physics. Bibcode : RPPh Mathematical Tripos. Cambridge University.

Archived from the original PDF on 2 February Retrieved 24 January European Southern Observatory. Galactic Astronomy.

Retrieved 8 December Physics for the 21st Century. Annenberg Foundation. The Register. For an intermediate-level introduction, see Hu, Wayne The Astrophysical Journal Supplement.

Cosmological parameters". Bibcode : PhRvL.. Modern Physics Letters A. Bibcode : MPLA The Astrophysical Journal Letters. Beijing, China. Retrieved 16 March European Space Agency.

Retrieved 9 February Bibcode : Natur. Physical Review Letters. Bibcode : PhRvL. Physics of the Dark Universe. Bibcode : PDU Journal of Cosmology and Astroparticle Physics.

Bibcode : JCAP Swinburne University of Technology. Retrieved 9 April Big bang nucleosynthesis: Cooking up the first light elements.

Einstein Online. Archived from the original on 6 February An Introduction to the Science of Cosmology. IOP Publishing. The First Stars.

ESO Astrophysics Symposia. Bibcode : fist. New J. Bibcode : NJPh November Cornell University - Ask an Astronomer. Archived from the original on 2 March Archived from the original on 26 October One widely held belief about dark matter is it cannot cool off by radiating energy.

If it could, then it might bunch together and create compact objects in the same way baryonic matter forms planets, stars, and galaxies.

Messungen der Doppler-Verschiebung zeigen jedoch, dass sie konstant bleibt oder sogar ansteigt, siehe Rotationskurve.

Ihre Existenz gilt bisher als nicht nachgewiesen, wird aber durch weitere astronomische Beobachtungen wie die Dynamik von Galaxienhaufen und den schon erwähnten Gravitationslinseneffekt nahegelegt, die durch die sichtbare Materie allein nicht erklärbar sind, wenn man die anerkannten Gravitationsgesetze zugrunde legt.

Der Dunklen Materie wird eine wichtige Rolle bei der Strukturbildung im Universum und bei der Galaxienbildung zugeschrieben.

Messungen im Rahmen des Standardmodells der Kosmologie legen nahe, dass der Anteil der Dunklen Materie an der Masse-Energie-Dichte im Universum etwa fünfmal so hoch ist wie derjenige der gewöhnlichen sichtbaren Materie.

Er stellte fest, dass das Fache der sichtbaren Masse notwendig ist, um den Haufen gravitativ zusammenzuhalten.

Die Analyse der Umlaufgeschwindigkeiten von Sternen in Spiralgalaxien durch Vera Rubin seit zeigte erneut die Problematik auf: Die Umlaufgeschwindigkeit der Sterne müsste mit zunehmendem Abstand zum Galaxiezentrum viel niedriger sein, als sie tatsächlich ist.

Von der sichtbaren Materie ist zu wenig vorhanden, um durch Gravitation die Dichtekontraste zu erzeugen. Vergleichende Beobachtungen des Gravitationslinseneffekts , der Galaxienverteilung und der Röntgenemission im Bullet-Cluster im Jahr stellen den bislang stärksten Hinweis auf die Existenz Dunkler Materie dar.

Diese Parameter beeinflussen Detektorexperimente auf der Erde, die Dunkle Materie direkt nachweisen wollen, und sind dadurch testbar.

Eine weitere Vorhersage dieser Simulationen ist das charakteristische Strahlungsmuster, [8] das entsteht, wenn Dunkle Materie durch Annihilationsprozesse Gammastrahlung aussendet.

Nach gängiger Theorie muss Dunkle Materie existieren, da sich die Sterne sonst nicht weiter um das Zentrum ihrer Galaxien drehen würden, wie sie es tatsächlich tun.

Diese suchen Forscher beispielsweise im italienischen Untergrundlabor Gran Sasso. Es wurde bereits darauf hingewiesen, dass dunkle Materieteilchen zerfallen und dabei Röntgenstrahlen aussenden könnten.

Dies ist analog zur Annihilation wenn ein Elektron auf sein Antiteilchen, das Positron , trifft. Eine solche leichte Dunkle Materie wird normalerweise als problematisch angesehen, da es schwierig ist zu erklären, wie Galaxien entstanden sein könnten.

In der Anfangsphase würde somit ein Zwischenzustand gebildet, der sich später in die beobachteten Röntgenphotonen auflöst.

Die Ergebnisse der Berechnungen zeigen, dass die resultierende Röntgensignatur eng mit den Beobachtungen korreliert und somit eine neue mögliche Erklärung dafür darstellt.

Dieses neue Modell ist selbst so allgemein, dass es einen neuen Ansatz für die Suche nach dunkler Materie bietet, auch wenn sich herausstellen sollte, dass die entdeckte Spektrallinie einen anderen Ursprung hat.

In der Teilchenphysik werden verschiedene Kandidaten als Konstituenten der Dunklen Materie diskutiert. Ein direkter Nachweis im Labor ist bislang nicht geglückt, damit gilt die Zusammensetzung der Dunklen Materie als unbekannt.

Gewöhnliche Materie besteht aus Protonen , Neutronen und Elektronen. Elektronen haben eine um den Faktor geringere Masse als Protonen und Neutronen, die damit in guter Näherung die Masse gewöhnlicher Materie bestimmen.

Da Protonen und Neutronen zu den Baryonen gehören, wird gewöhnliche Materie auch baryonische Materie genannt. Gegen diese Hypothese spricht die Tatsache, dass sich kaltes Gas unter bestimmten Umständen durchaus erwärmen kann und selbst riesige Gasmengen nicht die benötigte Masse aufbringen könnten.

Eine ähnliche Lösung stellt die mögliche Existenz kalter Staubwolken dar, die auf Grund ihrer niedrigen Temperatur nicht strahlen und somit unsichtbar wären.

Allerdings würden sie das Licht von Sternen reemittieren und somit im Infrarotbereich sichtbar sein. Es handelt sich dabei um Himmelskörper, in denen der Druck so gering ist, dass statt Wasserstoff- nur Deuteriumfusion stattfinden kann, wodurch sie nicht im sichtbaren Spektrum leuchten.

Stattdessen werden hier alle Fermionen durch Dirac- Spinoren beschrieben, auch die Neutrinos , die damit von Antineutrinos unterscheidbar wären.

Allerdings sind die Neutrinos im Standardmodell im Widerspruch zu experimentellen Ergebnissen masselos.

Grosse und massereiche Galaxienhaufen erzeugen laut der allgemeinen Relativitätstheorie eine lokale Raumkrümmung. Es existieren verschiedenen Hypothesen bezüglich der Natur der Dunklen Materie, Irrenanstalt untersucht werden. Exoplaneten Leben im All: Forscher finden 24 extrem gut bewohnbare Planeten. Rund achtzig Prozent der Materie Porpentina Goldstein Universum bestehen aus einem Stoff, den bisher noch niemand gesehen hat — aus Dunkler Materie. Insbesondere senkrecht zur Scheibe der Milchstrasse ist das relativ einfach, da es in dieser Richtung im Allgemeinen wenig Dunkle Materie Staub gibt. Dies ist analog zur Annihilation wenn ein Elektron Filme Online Net sein Antiteilchen, das Positrontrifft. Das Ergebnis hat auch Der Bulle Und Das Landei potenzielle praktische Anwendung. Astronomie Gravitationslinseneffekt In der

Dunkle Materie Inhaltsverzeichnis Video

NASA DOKU Der Schlüssel zur dunklen Materie Doku HD 2018

Facebooktwitterredditpinterestlinkedinmail

1 Gedanken zu „Dunkle Materie

  1. Visho Antworten

    Ich entschuldige mich, aber meiner Meinung nach irren Sie sich. Ich biete es an, zu besprechen. Schreiben Sie mir in PM.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.